Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Front Public Health ; 10: 964741, 2022.
Article in English | MEDLINE | ID: covidwho-2065648

ABSTRACT

Arisaema jacquemontii Blume is a highly medicinal and poisonous plant belong to the family Araceae. It is used to treat several deadly diseases, including viral infections. It has antioxidant, anti-cancerous, antimalarial, anti-vermicidal, and antiviral activities. Therefore, five parts of the Arisaema jacquemontii Blume plant, such as leaf, seed, stem, pulp, and rhizome extract, were evaluated for metabolic and in silico characterization of probable compounds using gas chromatography-mass spectrometry (GC-MS) analysis. A total of 22 compounds were isolated from the methanolic extracts of A. jacquemontii Blume. A selected antiviral COVID-19 protein i.e., protease (6LU7) was docked against the obtained compounds. Different affinities were obtained through various compounds. The best results were shown by three different compounds identified in the rhizome. The maximum binding affinity of these compounds is 8.1 kJ/mol. Molecular docking (MD) indicate that these molecules have the highest binding energies and hydrogen bonding interactions. The binding mode of interaction was discovered to be reasonably effective for counteracting the SARS virus COVID-19. The findings of this study could be extremely useful in the development of more phytochemical-based COVID-19 therapeutics.


Subject(s)
Antimalarials , Arisaema , COVID-19 Drug Treatment , Antioxidants , Antiviral Agents/pharmacology , Arisaema/chemistry , Molecular Docking Simulation , Peptide Hydrolases , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology
2.
Molecules ; 27(18)2022 Sep 15.
Article in English | MEDLINE | ID: covidwho-2043868

ABSTRACT

Traditionally, Brassica species are widely used in traditional medicine, human food, and animal feed. Recently, special attention has been dedicated to Brassica seeds as source of health-promoting phytochemicals. This review provides a summary of recent research on the Brassica seed phytochemistry, bioactivity, dietary importance, and toxicity by screening the major online scientific database sources and papers published in recent decades by Elsevier, Springer, and John Wiley. The search was conducted covering the period from January 1964 to July 2022. Phytochemically, polyphenols, glucosinolates, and their degradation products were the predominant secondary metabolites in seeds. Different extracts and their purified constituents from seeds of Brassica species have been found to possess a wide range of biological properties including antioxidant, anticancer, antimicrobial, anti-inflammatory, antidiabetic, and neuroprotective activities. These valuable functional properties of Brassica seeds are related to their richness in active compounds responsible for the prevention and treatment of various chronic diseases such as obesity, diabetes, cancer, and COVID-19. Currently, the potential properties of Brassica seeds and their components are the main focus of research, but their toxicity and health risks must also be accounted for.


Subject(s)
Anti-Infective Agents , Brassica , COVID-19 , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Brassica/chemistry , Ethnopharmacology , Glucosinolates , Humans , Hypoglycemic Agents/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytotherapy , Plant Extracts/chemistry , Seeds
3.
Molecules ; 27(16)2022 Aug 11.
Article in English | MEDLINE | ID: covidwho-2023934

ABSTRACT

The flora of Kazakhstan is characterized by its wide variety of different types of medicinal plants, many of which can be used on an industrial scale. The Traditional Kazakh Medicine (TKM) was developed during centuries based on the six elements of ancient Kazakh theory, associating different fields such as pharmacology, anatomy, pathology, immunology and food nursing as well as disease prevention. The endemic Artemisia L. species are potential sources of unique and new natural products and new chemical structures, displaying diverse bioactivities and leading to the development of safe and effective phytomedicines against prevailing diseases in Kazakhstan and the Central Asia region. This review provides an overview of Artemisia species from Central Asia, particularly traditional uses in folk medicine and the recent numerous phytochemical and pharmacological studies. The review is done by the methods of literature searches in well-known scientific websites (Scifinder and Pubmed) and data collection in university libraries. Furthermore, our aim is to search for promising and potentially active Artemisia species candidates, encouraging us to analyze Protein Tyrosine Phosphatase 1B (PTP1B), α-glucosidase and bacterial neuraminidase (BNA) inhibition as well as the antioxidant potentials of Artemisia plant extracts, in which endemic species have not been explored for their secondary metabolites and biological activities so far. The main result of the study was that, for the first time, the species Artemisia scopiformis Ledeb. Artemisia albicerata Krasch., Artemisia transiliensis Poljakov, Artemisia schrenkiana Ledeb., Artemisia nitrosa Weber and Artemisia albida Willd. ex Ledeb. due to their special metabolites, showed a high potential for α-glucosidase, PTP1B and BNA inhibition, which is associated with diabetes, obesity and bacterial infections. In addition, we revealed that the methanol extracts of Artemisia were a potent source of polyphenolic compounds. The total polyphenolic contents of Artemisia extracts were correlated with antioxidant potential and varied according to plant origin, the solvent of extraction and the analytical method used. Consequently, oxidative stress caused by reactive oxygen species (ROS) may be managed by the dietary intake of current Artemisia species. The antioxidant potentials of the species A. schrenkiana, A. scopaeformis, A. transiliensis and Artemisia scoparia Waldst. & Kitam. were also promising. In conclusion, the examination of details between different Artemisia species in our research has shown that plant materials are good as an antioxidant and eznyme inhibitory functional natural source.


Subject(s)
Artemisia , Antioxidants/pharmacology , Artemisia/chemistry , Ethnopharmacology , Humans , Phytochemicals/chemistry , Phytotherapy , Plant Extracts/chemistry , alpha-Glucosidases
4.
Environ Sci Pollut Res Int ; 29(59): 89295-89339, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1935851

ABSTRACT

The whole world is still challenged with COVID-19 pandemic caused by Coronavirus-2 (SARS-CoV-2) which has affected millions of individuals around the globe. Although there are prophylactic vaccines being used, till now, there is ongoing research into discovery of drug candidates for total eradication of all types of coronaviruses. In this context, this study sought to investigate the inhibitory effects of six selected tropical plants against four pathogenic proteins of Coronavirus-2. The medicinal plants used in this study were selected based on their traditional applications in herbal medicine to treat COVID-19 and related symptoms. The biological activities (antioxidant, free radical scavenging, and anti-inflammatory activities) of the extracts of the plants were assessed using different standard procedures. The phytochemicals present in the extracts were identified using GCMS and further screened via in silico molecular docking. The data from this study demonstrated that the phytochemicals of the selected tropical medicinal plants displayed substantial binding affinity to the binding pockets of the four main pathogenic proteins of Coronavirus-2 indicating them as putative inhibitors of Coronavirus-2 and as potential anti-coronavirus drug candidates. The reaction between these phytocompounds and proteins of Coronavirus-2 could alter the pathophysiology of COVID-19, thus mitigating its pathogenic reactions/activities. In conclusion, phytocompounds of these plants exhibited promising binding efficiency with target proteins of SARS-COV-2. Nevertheless, in vitro and in vivo studies are important to potentiate these findings. Other drug techniques or models are vital to elucidate their compatibility and usage as adjuvants in vaccine development against the highly contagious COVID-19 infection.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Pandemics , Molecular Docking Simulation , Nigeria , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry
5.
Molecules ; 27(13)2022 Jun 26.
Article in English | MEDLINE | ID: covidwho-1934173

ABSTRACT

The purpose of this study was to find the biological propensities of the vegetable plant Pleurospermum candollei by investigating its phytochemical profile and biological activities. Phytochemical analysis was done by spectroscopic methods to investigate the amount of total polyphenols, and biological evaluation was done by the different antioxidant, enzyme inhibitory (tyrosinase, α-amylase, and α-glucosidase), thrombolytic, and antibacterial activities. The highest amount of total phenolic and flavonoid contents was observed in methanolic extract (240.69 ± 2.94 mg GAE/g and 167.59 ± 3.47 mg QE/g); the fractions showed comparatively less quantity (57.02 ± 1.31 to 144.02 ± 2.11 mg GAE/g, and 48.21 ± 0.75 to 96.58 ± 2.30 mg QE/g). The effect of these bioactive contents was also related to biological activities. GCMS analysis led to the identification of bioactive compounds with different biological effects from methanolic extract (antioxidant; 55.07%, antimicrobial; 56.41%), while the identified compounds from the n-hexane fraction with antioxidant properties constituted 67.86%, and those with antimicrobial effects constituted 82.95%; however, the synergetic effect of polyphenols may also have contributed to the highest value of biological activities of methanolic extract. Molecular docking was also performed to understand the relationship of identified secondary metabolites with enzyme-inhibitory activities. The thrombolytic activity was also significant (40.18 ± 1.80 to 57.15 ± 1.10 % clot lysis) in comparison with streptokinase (78.5 ± 1.53 to 82.34 ± 1.25% clot lysis). Methanolic extract also showed good activity against Gram-positive strains of bacteria, and the highest activity was observed against Bacillus subtilis. The findings of this study will improve our knowledge of phytochemistry, and biological activities of P. candollei, which seems to be a ray of hope to design formulations of natural products for the improvement of health and prevention of chronic diseases; however, further research may address the development of novel drugs for use in pharmaceuticals.


Subject(s)
Anti-Infective Agents , Apiaceae , Biological Products , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Biological Products/pharmacology , Methanol/chemistry , Molecular Docking Simulation , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polyphenols/pharmacology
6.
PLoS One ; 17(6): e0268454, 2022.
Article in English | MEDLINE | ID: covidwho-1892318

ABSTRACT

This study aims to investigate the binding potential of chemical compounds of Senna in comparison with the experimentally tested active phytochemicals against SARS-CoV-2 protein targets to assist in prevention of infection by exploring multiple treatment options. The entire set of phytochemicals from both the groups were subjected to advanced computational analysis that explored functional molecular descriptors from a set of known medicinal-based active therapeutics followed by MD simulations on multiple SARS-CoV-2 target proteins. Our findings manifest the importance of hydrophobic substituents in chemical structures of potential inhibitors through cross-validation with the FDA-approved anti-3CLpro drugs. Noteworthy improvement in end-point binding free energies and pharmacokinetic profiles of the proposed compounds was perceived in comparison to the control drug, vizimpro. Moreover, the identification of common drug targets namely; AKT1, PTGS1, TNF, and DPP4 between proposed active phytochemicals and Covid19 using network pharmacological analysis further substantiate the importance of medicinal scaffolds. The structural dynamics and binding affinities of phytochemical compounds xanthoangelol_E, hesperetin, and beta-sitosterol reported as highly potential against 3CLpro in cell-based and cell-free assays are consistent with the computational analysis. Whereas, the secondary metabolites such as sennosides A, B, C, D present in higher amount in Senna exhibited weak binding affinity and instability against the spike protein, helicase nsp13, RdRp nsp12, and 3CLpro. In conclusion, the results contravene fallacious efficacy claims of Senna tea interventions circulating on electronic/social media as Covid19 cure; thus emphasizing the importance of well-examined standardized data of the natural products in hand; thereby preventing unnecessary deaths under pandemic hit situations worldwide.


Subject(s)
COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Humans , Molecular Docking Simulation , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , SARS-CoV-2 , Sennosides
7.
Appl Biochem Biotechnol ; 194(1): 291-301, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1748423

ABSTRACT

Corona virus pandemic outbreak also known as COVID-19 has created an imbalance in this world. Scientists have adopted the use of natural or alternative medicines which are consumed mostly as dietary supplements to boost the immune system as herbal remedies. India is famous for traditional medicinal formulations which includes 'Trikadu'-a combination of three acrids, namely Zingiber officinale, Piper nigrum and Piper longum which have antioxidant properties that boost our immune system hence acting as a strong preventive measure. In this study, AutoDock 4.0 was used to study interaction between the phytocompounds of Trikadu with RNA-dependent polymerase protein and enveloped protein of the SARS-CoV-2 virus. Analysis of the results showed that coumarin, coumaperine and bisdemethoxycurcumin showed strong bonding interactions with both the proteins. We can conclude that Trikadu has the potential molecules; hence, it can be incorporated in the diet to boost the immune system as a preventive measure against the virus.


Subject(s)
COVID-19 Drug Treatment , COVID-19/immunology , Phytotherapy , Plant Preparations/therapeutic use , SARS-CoV-2 , Antioxidants/isolation & purification , Antioxidants/therapeutic use , COVID-19/virology , Computer Simulation , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/drug effects , Dietary Supplements , Ginger/chemistry , Humans , Immune System/drug effects , India , Ligands , Medicine, Traditional , Molecular Docking Simulation , Phytochemicals/chemistry , Phytochemicals/therapeutic use , Piper/chemistry , Piper nigrum/chemistry , Plant Preparations/isolation & purification , Plants, Medicinal/chemistry , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/drug effects
8.
Molecules ; 27(2)2022 Jan 13.
Article in English | MEDLINE | ID: covidwho-1625268

ABSTRACT

The focus of this roadmap is to evaluate the possible efficacy of Artemisia herba-alba Asso. (Asteraceae) for the treatment of COVID-19 and some of its symptoms and several comorbidities using a combination of in silico (molecular docking) studies, reported ethnic uses, and pharmacological activity studies of this plant. In this exploratory study, we show that various phytochemicals from Artemisia herba-alba can be useful against COVID-19 (in silico studies) and for its associated comorbidities. COVID-19 is a new disease, so reports of any therapeutic treatments against it (traditional or conventional) are scanty. On the other hand, we demonstrate, using Artemisia herba-alba as an example, that through a proper search and identification of medicinal plant(s) and their phytochemicals identification using secondary data (published reports) on the plant's ethnic uses, phytochemical constituents, and pharmacological activities against COVID-19 comorbidities and symptoms coupled with the use of primary data obtained from in silico (molecular docking and molecular dynamics) studies on the binding of the selected plant's phytochemicals (such as: rutin, 4,5-di-O-caffeoylquinic acid, and schaftoside) with various vital components of SARS-CoV-2, it may be possible to rapidly identify plants that are suitable for further research regarding therapeutic use against COVID-19 and its associated symptoms and comorbidities.


Subject(s)
Artemisia/chemistry , COVID-19 Drug Treatment , Plant Extracts/chemistry , Plant Extracts/pharmacology , COVID-19/epidemiology , Comorbidity , Coronavirus 3C Proteases/chemistry , Ethnobotany/methods , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Phytochemicals/chemistry , Plants, Medicinal/chemistry
9.
Anticancer Agents Med Chem ; 22(9): 1674-1698, 2022.
Article in English | MEDLINE | ID: covidwho-1515508

ABSTRACT

Over-prescription of medicines leads to some crucial health issues like resistance, non-specificity, etc. Therefore, a human consumes various natural foods, therapeutics, and nutritional supplements to combat this problem. Various therapeutic properties of secondary metabolites, such as anticancer, anti-inflammatory, and antibacterial properties, are important in drug discovery and medicinal application. These natural products have replaced synthetic materials, resulting in a great deal of sustainability, rational use, and preservation of biodiversity. This review described the potential therapeutic applications of secondary plant metabolites found in Himalayan Indian plants. The database contains 45 plants to treat various diseases, such as cancer, inflammation, and microbial infections. Besides authorized ITIS names, it includes Hindi names, family names, and active constituents. The most important information about the molecules can be found in the hyperlinks for the active constituents. It includes structures (two-dimensional and threedimensional), names and identifiers, chemical and physical properties, spectral information, biochemistry, literature and patents. The review also references various phytochemicals responsible for preventing COVID-19. Despite several challenges in manufacturing natural products, researchers may conduct research to produce successful medicines with few side effects.


Subject(s)
Biological Products , COVID-19 , Plants, Medicinal , Biological Products/pharmacology , Biological Products/therapeutic use , Drug Discovery , Humans , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Plants, Medicinal/chemistry
10.
Molecules ; 26(22)2021 Nov 10.
Article in English | MEDLINE | ID: covidwho-1512512

ABSTRACT

The novel coronavirus disease (COVID-19), the reason for worldwide pandemic, has already masked around 220 countries globally. This disease is induced by Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2). Arising environmental stress, increase in the oxidative stress level, weak immunity and lack of nutrition deteriorates the clinical status of the infected patients. Though several researches are at its peak for understanding and bringing forward effective therapeutics, yet there is no promising solution treating this disease directly. Medicinal plants and their active metabolites have always been promising in treating many clinical complications since time immemorial. Mother nature provides vivid chemical structures, which act multi-dimensionally all alone or synergistically in mitigating several diseases. Their unique antioxidant and anti-inflammatory activity with least side effects have made them more effective candidate for pharmacological studies. These medicinal plants inhibit attachment, encapsulation and replication of COVID-19 viruses by targeting various signaling molecules such as angiotensin converting enzyme-2, transmembrane serine protease 2, spike glycoprotein, main protease etc. This property is re-examined and its potency is now used to improve the existing global health crisis. This review is an attempt to focus various antiviral activities of various noteworthy medicinal plants. Moreover, its implications as prophylactic or preventive in various secondary complications including neurological, cardiovascular, acute kidney disease, liver disease are also pinpointed in the present review. This knowledge will help emphasis on the therapeutic developments for this novel coronavirus where it can be used as alone or in combination with the repositioned drugs to combat COVID-19.


Subject(s)
COVID-19 Drug Treatment , Drug Repositioning , Phytochemicals/therapeutic use , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/pathology , COVID-19/virology , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Humans , Phytochemicals/chemistry , Phytochemicals/metabolism , Phytochemicals/pharmacology , Plants, Medicinal/chemistry , Plants, Medicinal/metabolism , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects
11.
Molecules ; 26(20)2021 Oct 15.
Article in English | MEDLINE | ID: covidwho-1480885

ABSTRACT

In our in vitro and in vivo studies, we used Acalypha indica root methanolic extract (AIRME), and investigated their free radical scavenging/antioxidant and anti-inflammatory properties. Primarily, phytochemical analysis showed rich content of phenols (70.92 mg of gallic acid/g) and flavonoids (16.01 mg of rutin/g) in AIRME. We then performed HR-LC-MS and GC-MS analyses, and identified 101 and 14 phytochemical compounds, respectively. Among them, ramipril glucuronide (1.563%), antimycin A (1.324%), swietenine (1.134%), quinone (1.152%), oxprenolol (1.118%), choline (0.847%), bumetanide (0.847%) and fenofibrate (0.711%) are the predominant phytomolecules. Evidence from in vitro studies revealed that AIRME scavenges DPPH and hydroxyl radicals in a concentration dependent manner (10-50 µg/mL). Similarly, hydrogen peroxide and lipid peroxidation were also remarkably inhibited by AIRME as concentration increases (20-100 µg/mL). In vitro antioxidant activity of AIRME was comparable to ascorbic acid treatment. For in vivo studies, carrageenan (1%, sub-plantar) was injected to rats to induce localized inflammation. Acute inflammation was represented by paw-edema, and significantly elevated (p < 0.05) WBC, platelets and C-reactive protein (CRP). However, AIRME pretreatment (150/300 mg/kg bodyweight) significantly (p < 0.05) decreased edema volume. This was accompanied by a significant (p < 0.05) reduction of WBC, platelets and CRP with both doses of AIRME. The decreased activities of superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase in paw tissue were restored (p < 0.05 / p < 0.01) with AIRME in a dose-dependent manner. Furthermore, AIRME attenuated carrageenan-induced neutrophil infiltrations and vascular dilation in paw tissue. For the first time, our findings demonstrated the potent antioxidant and anti-inflammatory properties of AIRME, which could be considered to develop novel anti-inflammatory drugs.


Subject(s)
Acalypha/chemistry , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plants, Medicinal/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Disease Models, Animal , Edema/drug therapy , Edema/enzymology , Edema/pathology , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , In Vitro Techniques , Male , Phytotherapy , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Roots/chemistry , Rats , Rats, Wistar
12.
Molecules ; 26(19)2021 Oct 08.
Article in English | MEDLINE | ID: covidwho-1463772

ABSTRACT

The naturally occurring saponins exhibit remarkable interfacial activity and also possess many biological activities linking to human health benefits, which make them particularly attractive as bifunctional building blocks for formulation of colloidal multiphase food systems. This review focuses on two commonly used food-grade saponins, Quillaja saponins (QS) and glycyrrhizic acid (GA), with the aim of clarifying the relationship between the structural features of saponin molecules and their subsequent self-assembly and interfacial properties. The recent applications of these two saponins in various colloidal multiphase systems, including liquid emulsions, gel emulsions, aqueous foams and complex emulsion foams, are then discussed. A particular emphasis is on the unique use of GA and GA nanofibrils as sole stabilizers for fabricating various multiphase food systems with many advanced qualities including simplicity, ultrastability, stimulability, structural viscoelasticity and processability. These natural saponin and saponin-based colloids are expected to be used as sustainable, plant-based ingredients for designing future foods, cosmetics and pharmaceuticals.


Subject(s)
Glycyrrhizic Acid/chemistry , Plants/chemistry , Quillaja Saponins/chemistry , Colloids/chemistry , Cosmetics/chemistry , Food Technology , Molecular Structure , Phytochemicals/chemistry
13.
Biomed Res Int ; 2021: 1636816, 2021.
Article in English | MEDLINE | ID: covidwho-1455769

ABSTRACT

Respiratory inflammation is caused by an air-mediated disease induced by polluted air, smoke, bacteria, and viruses. The COVID-19 pandemic is also a kind of respiratory disease, induced by a virus causing a serious effect on the lungs, bronchioles, and pharynges that results in oxygen deficiency. Extensive research has been conducted to find out the potent natural products that help to prevent, treat, and manage respiratory diseases. Traditionally, wider floras were reported to be used, such as Morus alba, Artemisia indica, Azadirachta indica, Calotropis gigantea, but only some of the potent compounds from some of the plants have been scientifically validated. Plant-derived natural products such as colchicine, zingerone, forsythiaside A, mangiferin, glycyrrhizin, curcumin, and many other compounds are found to have a promising effect on treating and managing respiratory inflammation. In this review, current clinically approved drugs along with the efficacy and side effects have been studied. The study also focuses on the traditional uses of medicinal plants on reducing respiratory complications and their bioactive phytoconstituents. The pharmacological evidence of lowering respiratory complications by plant-derived natural products has been critically studied with detailed mechanism and action. However, the scientific validation of such compounds requires clinical study and evidence on animal and human models to replace modern commercial medicine.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Pandemics , Phytochemicals/therapeutic use , Plant Extracts/therapeutic use , Plants, Medicinal/chemistry , SARS-CoV-2 , Animals , COVID-19/epidemiology , Humans , Inflammation/drug therapy , Inflammation/epidemiology , Phytochemicals/chemistry , Plant Extracts/chemistry
14.
Mini Rev Med Chem ; 22(3): 457-483, 2022.
Article in English | MEDLINE | ID: covidwho-1399062

ABSTRACT

Coronaviruses have caused worldwide outbreaks in different periods. SARS (severe acute respiratory syndrome) was the first emerged virus from this family, followed by MERS (Middle East respiratory syndrome) and SARS-CoV-2 (2019-nCoV or COVID 19), which is newly emerged. Many studies have been conducted on the application of chemical and natural drugs for treating these coronaviruses and they are mostly focused on inhibiting the proteases of viruses or blocking their protein receptors through binding to amino acid residues. Among many substances which are introduced to have an inhibitory effect against coronaviruses through the mentioned pathways, natural components are of specific interest. Secondary and primary metabolites from plants, are considered as potential drugs to have an inhibitory effect on coronaviruses. IC50 value (the concentration in which there is 50% loss in enzyme activity), molecular docking score and binding energy are parameters to understand the ability of metabolites to inhibit the specific virus. In this study we reviewed 154 papers on the effect of plant metabolites on different coronaviruses and data of their IC50 values, molecular docking scores and inhibition percentages are collected in tables. Secondary plant metabolites such as polyphenol, alkaloids, terpenoids, organosulfur compounds, saponins and saikosaponins, lectins, essential oil, and nicotianamine, and primary metabolites such as vitamins are included in this study.


Subject(s)
Antiviral Agents/pharmacology , Phytochemicals/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Phytochemicals/chemistry , COVID-19 Drug Treatment
15.
Biomolecules ; 11(8)2021 08 23.
Article in English | MEDLINE | ID: covidwho-1367768

ABSTRACT

In 2019, COVID-19 emerged as a severe respiratory disease that is caused by the novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The disease has been associated with high mortality rate, especially in patients with comorbidities such as diabetes, cardiovascular and kidney diseases. This could be attributed to dysregulated immune responses and severe systemic inflammation in COVID-19 patients. The use of effective antiviral drugs against SARS-CoV-2 and modulation of the immune responses could be a potential therapeutic strategy for COVID-19. Studies have shown that natural phenolic compounds have several pharmacological properties, including anticoronavirus and immunomodulatory activities. Therefore, this review discusses the dual action of these natural products from the perspective of applicability at COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Flavonoids/therapeutic use , Immunologic Factors/therapeutic use , Phytochemicals/therapeutic use , Protease Inhibitors/therapeutic use , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus/drug effects , Flavonoids/chemistry , Flavonoids/pharmacology , Humans , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology
16.
Expert Rev Clin Pharmacol ; 14(10): 1305-1315, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1322577

ABSTRACT

BACKGROUND: The high transmission and pathogenicity of SARS-CoV-2 has led to a pandemic that has halted the world's economy and health. The newly evolved strains and scarcity of vaccines has worsened the situation. The main protease (Mpro) of SARS-CoV-2 can act as a potential target due to its role in viral replication and conservation level. METHODS: In this study, we have enlisted more than 1100 phytochemicals from Asian plants based on deep literature mining. The compounds library was screened against the Mpro of SARS-CoV-2. RESULTS: The selected three ligands, Flemichin, Delta-Oleanolic acid, and Emodin 1-O-beta-D-glucoside had a binding energy of -8.9, -8.9, -8.7 KJ/mol respectively. The compounds bind to the active groove of the main protease at; Cys145, Glu166, His41, Met49, Pro168, Met165, Gln189. The multiple descriptors from the simulation study; root mean square deviation, root mean square fluctuation, radius of gyration, hydrogen bond, solvent accessible surface area confirms the stable nature of the protein-ligand complexes. Furthermore, post-md analysis confirms the rigidness in the docked poses over the simulation trajectories. CONCLUSIONS: Our combinatorial drug design approaches may help researchers to identify suitable drug candidates against SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , Drug Discovery , Phytochemicals/pharmacology , SARS-CoV-2/enzymology , Viral Proteases/metabolism , Antiviral Agents/chemistry , Databases, Chemical , Gene Expression Regulation, Viral/drug effects , Molecular Docking Simulation , Molecular Structure , Phytochemicals/chemistry , Viral Proteases/genetics
17.
Int J Mol Sci ; 22(8)2021 Apr 09.
Article in English | MEDLINE | ID: covidwho-1298159

ABSTRACT

A comparative phytochemical study on the phenylethanoid glycoside (PhEG) composition of the underground organs of three Plantago species (P. lanceolata, P. major, and P. media) and that of the fruit wall and seed parts of Forsythia suspensa and F. europaea fruits was performed. The leaves of these Forsythia species and six cultivars of the hybrid F. × intermedia were also analyzed, demonstrating the tissue-specific accumulation and decomposition of PhEGs. Our analyses confirmed the significance of selected tissues as new and abundant sources of these valuable natural compounds. The optimized heat treatment of tissues containing high amounts of the PhEG plantamajoside (PM) or forsythoside A (FA), which was performed in distilled water, resulted in their characteristic isomerizations. In addition to PM and FA, high amounts of the isomerization products could also be isolated after heat treatment. The isomerization mechanisms were elucidated by molecular modeling, and the structures of PhEGs were identified by nuclear magnetic resonance spectroscopy (NMR) and high-resolution mass spectrometry (HR-MS) techniques, also confirming the possibility of discriminating regioisomeric PhEGs by tandem MS. The PhEGs showed no cytostatic activity in non-human primate Vero E6 cells, supporting their safe use as natural medicines and allowing their antiviral potency to be tested.


Subject(s)
Forsythia/chemistry , Glycosides/chemistry , Phytochemicals/chemistry , Plantago/chemistry , Animals , Chlorocebus aethiops , Chromatography, High Pressure Liquid , Forsythia/metabolism , Glycosides/metabolism , Glycosides/pharmacology , Isomerism , Molecular Conformation , Molecular Structure , Organ Specificity , Phytochemicals/metabolism , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plantago/metabolism , Structure-Activity Relationship , Vero Cells
18.
Molecules ; 26(13)2021 Jun 25.
Article in English | MEDLINE | ID: covidwho-1288961

ABSTRACT

A newly diagnosed coronavirus in 2019 (COVID-19) has affected all human activities since its discovery. Flavonoids commonly found in the human diet have attracted a lot of attention due to their remarkable biological activities. This paper provides a comprehensive review of the benefits of flavonoids in COVID-19 disease. Previously-reported effects of flavonoids on five RNA viruses with similar clinical manifestations and/or pharmacological treatments, including influenza, human immunodeficiency virus (HIV), severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and Ebola, were considered. Flavonoids act via direct antiviral properties, where they inhibit different stages of the virus infective cycle and indirect effects when they modulate host responses to viral infection and subsequent complications. Flavonoids have shown antiviral activity via inhibition of viral protease, RNA polymerase, and mRNA, virus replication, and infectivity. The compounds were also effective for the regulation of interferons, pro-inflammatory cytokines, and sub-cellular inflammatory pathways such as nuclear factor-κB and Jun N-terminal kinases. Baicalin, quercetin and its derivatives, hesperidin, and catechins are the most studied flavonoids in this regard. In conclusion, dietary flavonoids are promising treatment options against COVID-19 infection; however, future investigations are recommended to assess the antiviral properties of these compounds on this disease.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Flavonoids/pharmacology , Phytochemicals/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Flavonoids/chemistry , Flavonoids/therapeutic use , Humans , Phytochemicals/chemistry , Phytochemicals/therapeutic use , Signal Transduction/drug effects
19.
Molecules ; 26(13)2021 Jun 25.
Article in English | MEDLINE | ID: covidwho-1288960

ABSTRACT

(1) Background: The COVID-19 pandemic lacks treatments; for this reason, the search for potential compounds against therapeutic targets is still necessary. Bioinformatics tools have allowed the rapid in silico screening of possible new metabolite candidates from natural resources or repurposing known ones. Thus, in this work, we aimed to select phytochemical candidates from Peruvian plants with antiviral potential against three therapeutical targets of SARS-CoV-2. (2) Methods: We applied in silico technics, such as virtual screening, molecular docking, molecular dynamics simulation, and MM/GBSA estimation. (3) Results: Rutin, a compound present in Peruvian native plants, showed affinity against three targets of SARS-CoV-2. The molecular dynamics simulation demonstrated the high stability of receptor-ligand systems during the time of the simulation. Our results showed that the Mpro-Rutin system exhibited higher binding free energy than PLpro-Rutin and N-Rutin systems through MM/GBSA analysis. (4) Conclusions: Our study provides insight on natural metabolites from Peruvian plants with therapeutical potential. We found Rutin as a potential candidate with multiple pharmacological properties against SARS-CoV-2.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plants/chemistry , Plants/metabolism , Asteraceae/chemistry , Asteraceae/metabolism , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus Nucleocapsid Proteins/antagonists & inhibitors , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/chemistry , Databases, Factual , Humans , Lepidium/chemistry , Lepidium/metabolism , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Peru , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/chemistry , Rutin/chemistry , Rutin/pharmacology , SARS-CoV-2
20.
Plant J ; 107(5): 1299-1319, 2021 09.
Article in English | MEDLINE | ID: covidwho-1282039

ABSTRACT

Caffeoylquinic acids (CQAs) are specialized plant metabolites we encounter in our daily life. Humans consume CQAs in mg-to-gram quantities through dietary consumption of plant products. CQAs are considered beneficial for human health, mainly due to their anti-inflammatory and antioxidant properties. Recently, new biosynthetic pathways via a peroxidase-type p-coumaric acid 3-hydroxylase enzyme were discovered. More recently, a new GDSL lipase-like enzyme able to transform monoCQAs into diCQA was identified in Ipomoea batatas. CQAs were recently linked to memory improvement; they seem to be strong indirect antioxidants via Nrf2 activation. However, there is a prevalent confusion in the designation and nomenclature of different CQA isomers. Such inconsistencies are critical and complicate bioactivity assessment since different isomers differ in bioactivity and potency. A detailed explanation regarding the origin of such confusion is provided, and a recommendation to unify nomenclature is suggested. Furthermore, for studies on CQA bioactivity, plant-based laboratory animal diets contain CQAs, which makes it difficult to include proper control groups for comparison. Therefore, a synthetic diet free of CQAs is advised to avoid interferences since some CQAs may produce bioactivity even at nanomolar levels. Biotransformation of CQAs by gut microbiota, the discovery of new enzymatic biosynthetic and metabolic pathways, dietary assessment, and assessment of biological properties with potential for drug development are areas of active, ongoing research. This review is focused on the chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity recently reported for mono-, di-, tri-, and tetraCQAs.


Subject(s)
Anti-Inflammatory Agents/chemistry , Antioxidants/chemistry , Cognitive Dysfunction/prevention & control , Neuroprotective Agents/chemistry , Phytochemicals/chemistry , Plants, Medicinal/chemistry , Quinic Acid/analogs & derivatives , Acyltransferases/genetics , Acyltransferases/metabolism , Animals , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Biosynthetic Pathways , Brachypodium/enzymology , Dietary Supplements , Humans , Ipomoea batatas/enzymology , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , Phytochemicals/metabolism , Phytochemicals/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Quinic Acid/chemistry , Quinic Acid/metabolism , Quinic Acid/pharmacology , Terminology as Topic
SELECTION OF CITATIONS
SEARCH DETAIL